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Abstract 

I give solutions of the Einstein-Maxwell equations describing charge moving with the 
speed of light, c. The motion generates plane-fronted electromagnetic and gravitational 
waves. Charges moving parallel to each other with speed c do not interact; nor do they 
interact with parallel light beams. 

1. Introduction 

In a previous paper (Bonnor, 1969b), I gave solutions of  Maxwell's 
equations describing charge moving with the speed of light, c (called a null 
current). I now give the corresponding solutions in the Einstein-Maxwell 
theory (EMT). This is worth doing, because whereas Maxwell's theory 
(MT) allows one to place charge where one likes, EMT does not. For 
instance, MT admits a static solution for two isolated charges at rest, but 
EMT does not. Put another way, EMT entails the equations of motion of 
matter (charged and uncharged), whereas MT does not (even for charged 
matter). 

I t  turns out that the previously given solutions of  MT have precise 
analogues in EMT. This means that they are possible mechanically, as well 
as electromagnetically. For example, MT allows a dipole moving with 
speed c; an analogous solution exists in EMT, and has no non-electro- 
magnetic stresses. It  seems at first sight surprising that positive and negative 
charge can co-exist in steady motion. The explanation is that for this 
motion at speed c the ponderomotive force vanishes, so no non-electro- 
magnetic stresses are necessary to enforce the motion. In fact the pondero- 
motive force vanishes in the whole class of  solutions given previously 
(Bonnor, 1969b), which is why they have close analogues in EMT. 

This lack of interaction between objects moving in straight linest with 
speed e was noted previously in the case of  pulses and beams of light 

t I shall sometimes use this graphic, though loose, description. Strictly, the elements 
of the objects move on null geodesics. However, if one neglects the gravitational field 
and considers only the background Minkowski space-time, the projections of the world- 
lines of the elements on to a space-like 3-section are straight lines. 
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(Bonnor, 1969a). It is an easy matter to include such pulses and beams in 
this work, which allows me to show that they do not interact with parallel 
null currents. 

We shall, therefore, be interested in solutions of Einstein's equations 
with sources of two types: 

(i) an electromagnetic field generated by a null current; 
(ii) a directed flow of radiation (also called a n u l l  f l u i d ) .  

The gravitational field equations therefore are 

R ik - � 8 9  = -81rE ~k - 87rL ik (1.1) 
where 

E , k  = _ r ~ ,  F k  + �88 F , b  Fab (1.2) 

is the energy tensor for an electromagnetic field F~, and where 

L ik = p s  i s k (1.3) 

is the energy tensor for the null fluid of energy density p and null velocity 
s i. Maxwelrs equations are 

Fik = Bi .k  --  Bk, i (1.4) 

47rJ i = F ik j k  (1.5) 

B~ being the vector potential and j i  the null four-current. 
Solutions in which only sources (ii) are present have been studied 

previously (Bonnor, 1969a). I must emphasise that the null fluid is only a 
phenomenological representation of a pulse of light: the Maxwell equations 
for the pulse are n o t  satisfied. I adopt the standpoint of geometrical optics 
and represent the pulse by the energy tensor (1.3). This gives a representation 
of the gravitational field of the pulse, whilst neglecting its electromagnetic 
field. For something like a laser pulse this is probably not a bad model. 
Use of the null fluid concept has often been made in the past (e.g. Tolman, 
1934; Vaidya, 1953). 

The fields created by the null currents are plane-fronted electromagnetic 
and gravitational waves, as is shown in Section 2. In Section 3, I describe 
the superposition property of the fields, which seems to me the most 
interesting feature of the work. In Section 4 a solution for a pulse of null 
fluid is given, and in Section 5 some solutions for charges moving with 
speed c in a straight line. The latter are members of a class previously 
discovered by Peres (1960) and Takeno (i961), and they are also closely 
related to the solutions of Wyman & Trollope (1965); but, as far as I am 
aware, my interpretation of them is new. 

When speaking of continua it is sufficient to refer to null fluid, and null 
current, as defined above. However, it is useful to have words describing 
bodies made out of these continua, and for these I propose n u l l i e o n  and 
c h a r g e d  nu l l i con ,  respectively. A nullicon or a charged nullicon, then, is a 
body each of whose points has a null velocity vector. A nulticon is a photon 
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str ipped of  its electromagnetic  properties.  A charged nullicon may  have 
p = 0 (zero 'bare  mass ' ) ,  but  it must  nevertheless have a positive gravita- 
t ional  mass  because of  its electromagnetic energy (Section 5). 

2. P lane-Fronted  Elec tromagnet ic  and Gravitat ional  Waves  

We use the metric  (Ehlers & Kundt ,  1962) 

ds  2 = - d x  2 - d y  2 -~ 2 d~l dv @ 2 A du 2 (2.1) 

where -oo < x, y, u, v < o.. The function A ( x , y , u )  is to be of  class C ~, 
piecewise C 3. The coordinates  will be numbered  

x I = x ,  x 2 = y ,  x 3 - v, x 4 - u (2.2) 

so that  x ~ and x 2 are space-like, and x 3 null and x 4 are time-like, if  A > 0. 
The metric  (2. I) has determinant  

g = - 1  (2.3) 

and the only non-zero componen t  of  its Ricci tensor is 

R 33 = - - (Al l  + A22 ) (2.4) 

The  curvature  scalar satisfies 
R = 0 (2.5) 

because of  (2.1) and (2.4). 
The t rans format ion  

~/(2) u = t - z, ~/(2) v = t + z (2.6) 
takes (2.1) into 

ds2=-dx2-dy2-dg2(l - A ) -  2 A d z d t  + (1 + A ) d t  z (2.7) 

When  the metric is used in this fo rm I shall write 

21~---X, x Z = y ,  X3=Z,  2 4 ~ t  (2.8) 

and tensors referred to these components  will have a bar  over  them, e.g. 
"Rlk" 

The electromagnetic field will be generated by  the vector  potent ial  

B '  = (0 ,0 ,4 ,0 )  or  B, = (0,0,0,  ~) (2.9) 

where ~ ( x , y , u )  is o f  class C 1, piecewise C a. This is sufficient to ensure 
continuity of  the electromagnetic field, and so to avoid surface charges 
and surface currents. The field F~k, given by (1.4), has non-zero components  

---/714 = F 4 1  = q~l, -F24 = F42 = q~2 (2.10) 

where a subscript  1 or  2 after $ means a/Ox or a/ay. The current  J*, given 
by  (1.5), has components  

J '  = (4~r)-' (0, 0, - V  2 q~, 0) aof (0, 0, j ,  0) (2.11) 
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where 
a2 82 

V 2 =- ~ + Oy ~ (2.12) 

J~ is a null vector and provided that, at each world-point, charge of only 
one sign is present, it represents charge moving in a straight line with the 
speed of light, as shown previously (Bonnor, 1969b). The field (2.10) is 
null, i.e. 

Fik Fik = O, "q~klm F~k Ftm = 0 (2.13) 

an d the electromagnetic energy tensor E~k has only one non-zero component, 
namely 

E 33 = 412 + 422 (2.14) 

We can add an energy tensor L ~k given by (1.3) with 

s '  = ~/(2) 33' (2.15) 

L ~k has as only non-zero component 

L 33 =2p  (2.16) 

p(x,y,u) being the energy density of the null fluid; p is assumed to be 
piecewise of class C O and non-negative. The factor 2 is required because, 
for physical reasons, the energy density is to be identified as follows 

-L33 = -L34 = L4 3 = L4 4 = p (2.17) 

in the coordinates of (2.7) (Tolman, 1934; Bonnor, 1969a), and Z 33 = 2L4 4. 
From (2.4), (2.14) and (2.16) we have as the only field equation 

A l l  -~ 122 = 87r(412 "q- 422 "q- 21o ) (2.18) 

In space empty of charges and null fluid we have, as well, 

V2 4 = 0 (2.19) 

p = 0 (2.20) 

If  (2.19) is not satisfied there is a null current given by (2. I 1). To sum up, 
we have shown that a solution of the Einstein-Maxwell equations is given 
by the metric (2.1) together with equations (2.10), (2.16) and (2.18); and in 
empty space (2.19) and (2.20) must be satisfied too. The solution gives the 
field of straight null currents given by (2.11), and null uncharged fluid of 
density p and velocity (2.15); it represents combined electromagnetic and 
gravitational plane-fronted waves, the fronts being the null hypersurfaces 
u = const. The waves are like plane waves, but the fields may depend on 
x, y over each wave-front (Kundt, 1961). 

We may satisfy (2.18) by writing 

A = 4rr4 2 + A* + A**  (2.21) 
where 

A[~I + A*2 = 327r2 4 j  (2.22) 

A~I* + A~'2* = 167rp (2.23) 
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and j is given by (2.11). The problem now becomes determinate if distribu- 
tions of null current j and null fluid of density p are given, q~ is uniquely 
determined by (2.11) and suitable conditions at x, y = to; A*, A** are then 
determined by (2.22) and (2.23), and are unique if certain conditions on 
them at x, y = to are prescribed. Hence, from (2.21), A is uniquely deter- 
mined givenj and p. 

I shall actually relax the conditions imposed at x, y = ~ to allow solutions 
corresponding to monopole charge and positive mass moving with speed c. 
The latter require ~b and A ,-, log(x 2 +y2), so that one may add to both 
and A an arbitrary function of u. This destroys the uniqueness of q~ and A, 
givenj and p. Physically, this is of no importance, because the electromag- 
netic field F~e is independent of such additions to ~ and the addition to A 
can be removed by a coordinate transformation of the type: 

x = x, y = y, v = ~ + X(u), u = u (2.24) 

Examples of solutions are given in Sections 4 and 5. 

3. Superposition of  Solutions 

An interesting feature of the solutions described in Section 2 is that they 
may be superposed without the introduction of singularities in the metric. 

(1) (1) (1) (2) (2) (2) 
To see this, consider two solutions (A, ~, p), (A, ~, p) satisfying (2.18), 
and in empty space (2.19) and (2.20) also. Then the superposed solution is 
(A, ~,p) given by 

(1) (2) (1) (2) (1) (2) 
~ = ~ + ~ ,  p=p+p, j = j + j  (3.1) 

A = 4~-q~ z + A* + A** (3.2) 

where A* and A** satisfy (2.22) and (2.23). Assuming now (in accordance 
with the hypotheses of Section 2) that j and p are piecewise of class C ~ 
and that they are zero outside a bounded region in the x, y plane, it follows 
that (2.22) and (2.23) admit solutions A*, A** which are of class C l in 
every closed region (the proof follows by minor modifications of textbook 
results, e.g. Kellogg, 1953, p. 150). Hence A given by (3.1) is of class Cl ,  
and the complete solution is regular. Also, since the right-hand side of 
(2.18) is evidently non-negative, sources of negative energy are not present. 
Hence the superposition is non-singular, and no stresses are required to hoM 
the sources in position; it is also physically reasonable, at least in the sense 
that negative energy is not included. 

That there is no electromagnetic interaction of the charges is confirmed 
by the vanishing of the mechanical force: we have, using (2.10) and (2.11) 

F~kJ ~ = 0 (3.3) 
whatever ~ may be. 
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The foregoing shows that fields created by p and ,1 ~ show almost no 
interaction. To be explicit, 

(i) the null fluid of density p does not interact with itself or with the 
electromagnetic field; 

(ii) the electromagnetic field shows no self-interaction (i.e. the charges 
do not influence each others' motion), but does produce extra 
terms in the gravitational potential. 

It is to be emphasised that these conclusions apply only if the charges move 
in a straight line with speed c parallel to each other and to the null fluid, 
and all in the same sense. 

4. Field of a Pulse of Null Fluid (Nullicon) 

In this section I put q~ = 0 and give the field of a pulse of  null fluid, since 
this will be needed in Section 5. The solution for this is (cf. Bonnor, 1969a) 
given by substituting the following function A in (2.1) 

A~xt = ~b(21ogr + 1), p = 0 ,  r>~a (4.1) 

Cr 2 
Aint = a-~-, p = 47ra2, r <<. a (4.2) 

where ~b(u) is a C 3 pulse-function of the type described in Section 5, e.g. 
by (5.4). The occurrence of the logarithmic term does not render the solution 
unphysical, for reasons to be given in Section 5. The term in log r/a represents 
the effect of the gravitational mass of the nullicon. 

The non-uniqueness, referred to in Section 2, can be seen in this solution- 
we could instead have taken 

Aex t = 2~b log r ,  r > a 

r(~ ) 
A i n t = ~ b  - 1  , r<.a 

This solution can be transformed into (4.1)-(4.2) by choosing a new 
coordinate ~ such that 

v= +�89 f 

5. Charges Moving with the Speed of Light (Charged Nullicons) 

In this section I put p = 0. 
First I shall give the solution for charge~ of one sign moving parallel to 

~" Strictly, all that  is needed is that  on  each null hypersurface u = u0 (const.) the sign 
o f J  ~ is preserved; for different values of  Uo the sign can differ. This is referred to again 
later in this section. 
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the z-axis with the speed of light. Take 

~ =  ~b(u)(2 l og r  + 1), A =  47r~b z {4 ( logr)2 + 2 ( l o g r ) +  �89 
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r >>.a 

(5.1) 

(5.2) 
q~ ~b(u)r2 2zr~b2 r 4 

- -  a2  , A a4 , r ~< a 

where r = +(x2+ y2)1/2.  This solution satisfies (2.18) and (2.20) for r/> 0, 
and (2.19) for r > a; it is of class C x, piecewise C 3, in any closed interval 
of r, provided ~b(u) is of class C 3. It therefore is a solution of the Einstein- 
Maxwell equations. Its source is the null current 

j i  = 0 ,  r > a  
(5.3) 

Ji  = - - 5 ~ 3 i ,  r < a  

4' and A tend to infinity with r, but the electromagnetic field, given by 
(2.10), tends to zero. At every world-point P the metric (2.1) [with A given 
by (5.1)] can be transformed to natural (freely falling) coordinates, in 
which the g~k have Minkowski values at P and the derivatives ofglk vanish 
at P. The geodesics and null geodesics are therefore perfectly well behaved, 
and the solution is admissible in spite of the logarithmic terms. 

If  ~ is constant, the solution (5.1)-(5.3) refers to a steady stream of charge 
moving with the speed of light; the electric field is that of an infinite line 
charge, and the magnetic field that of an infinite straight current. 

One can construct a model of a charged nullicon by using (5.1) and (5.2) 
to form Fie and gik, and by choosing for ~b(u) some suitable C 3 pulse- 
function, e.g. 

r  = (b 2 - u2) 4, lu[ < b > 0 
~b(u) = 0, [u] 1> b (5.4) 

This particle contains nothing but charge of negative sign, yet unlike a 
static charged particle, it needs no non-electromagnetic stresses to hold it 
together. This is expected because of (3.3). 

For a pulse such as (5.4) an observer O at P(xo,Yo,Zo) experiences the 
electromagnetic and gravitational forces only whilst the pulse is passing P 
in its journey along Oz. The sharper the pulse the shorter the time during 
which O experiences the fields, but ( i fP is outside the pulse) O finds during 
this short time the electric field of an infinite line charge, and the magnetic 
field of an infinite straight current. This behaviour was analysed previously 
(Bonnor, 1969b). 

We can use (5.1) and (5.2) to represent two charged nullicons moving 
along Oz in the positive sense. Take ~b to consist of two non-overlapping 
pulses, e.g. 

~h = (b E - u2) 4, - b  ~< u ~< b 

~b = { f 2  __ (U - -  d )2}  4, d - f ~ <  u ~< d + f  (5.5) 
= 0 for other values of u 
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where b, d, f a r e  positive, and 
d - f >  b 

Inspecting A given by (5.1), (5.2) and (5.5), we see that the two charged 
nullicons do not interact at all; they do not even produce an extra term in A 
(see Section 3). The solution would still apply if the two parts of 4s had 
opposite signs, thus giving oppositely charged nullieons. 

Although the solution generated by (5.1) and (5.2) is globally regular, it 
is unphysical in that its electromagnetic energy 

f ; f E33"~/(-g)dxdy du 

[E 33 is given by (2.14)] diverges, owing to the presence of the logr in (5.1). 
This infinite energy is reflected in the dominant term in A in (5.1), namely 
(logr/a)Z; for large r, this is greater than the dominant term logr/a in (4.1), 
which refers to a nullicon of finite energy content. (The gravitational field 
is, however, well behaved in spite of the infinite electromagnetic energy.) 

Globular regular solutions of finite electromagnetic energy do exist 
however: for instance the following, which represents a nullicon with a 
dipole moment but zero total charge 

~b(u)cOS0r . ,212c0s20 ~r 2135aSa z48" r~ , A = ~np ~ + + l o g  a ) '  r >i a (5 .6 )  

~bcos 0 3 , r ~< a 
a 

[(r'~ 6 704(r'~' r 4 r 2 28 
+[~a]  - ~ k a ]  + 4 ( ~ ) + 2 ( a  ) - ~ ] } ,  r<~a 

~b being a pulse function. It will be noticed that although p is zero in this 
solution, A has a logr/a term which, according to Section 4, represents a 
gravitational mass. This is to be expected because the electromagnetic 
energy exerts a gravitational field. 

6. Conclusion 
The main conclusions of this work are as follows. 
(1) Everywhere--regular solutions of Einstein-Maxwell theory exist 

representing straight null currents (charge moving in straight lines with the 
speed of light), and these currents generate plane-fronted electromagnetic 
and gravitational waves. 

(2) Two or more parallel straight null currents (of either sign) can coexist 
without non-electromagnetic stresses. This is suggested by the fact that the 
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ponderomotive force vanishes; it is confirmed by the existence of rigorous 
solutions of EMT. 

(3) Straight null currents do not interact with parallel beams and pulses 
of light. 

(4) It is known (Lichnerowicz, 1955) that the energy tensor of every null 
electromagnetic field can be put in the form (1.3). Since the electromagnetic 
fields in this paper are null, it follows that the Eik in (1.1) can be put in 
form (1.3). Looked at from this point of view, the null currents studied in 
the paper each generate a null fluid. 
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